

adapya-base - Base for other adapya packages

adapya-base 1.0.4

	Overview
	adapya-base License

	Change History

	Installation
	Prerequisites

	Installation with Package Installer
	Additional z/OS Installation Notes

	PYTHONPATH Installation

	Additional Windows Installation Notes
	Simplifying Execution of Python Scripts

	Unix/Linux PYTHONPATH Installation

	Using adapya-base
	Read/Write Buffers with Abuf

	Working with Structures with Datamap
	Datamap Data Types

	Basic Usage example

	Example showing the different data types

	Defining Multiple fields

	Defining Periodic Group

	Scripts
	ftpz.py - synchronize PDS with local files in folders

	getfilez.py - transfer single file and optionally dump records

	smfreaderz.py - read and print SMF30 records

	Package Reference

	Indices

Overview

adapya-base provides basic functions used by other adapya packages like
e.g. adapya-adabas. It comes with sample programs and scripts to show its use.

adapya-base is a pure Python package: it does not require compilation
of extensions, but uses the ctypes module.

It has been used on mainframe z/OS, Solaris, z/Linux and Windows.

Further information on adapya can be found at

http://tech.forums.softwareag.com/techjforum/forums/show/171.page

adapya-base License

Copyright 2004-2019 Software AG

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and
limitations under the License.

Change History

adapya-base 1.0.0 (June 2018)

	jconfig uses keyring package for passwords if installed

	scripts for z/OS file transfer and processing SMF records

adapya-base 0.9.5 (April 2017)

	move adapya-base functions into separate defs module

	support of z/OS with the Rocket Python 2.7 and 3.6

adapya-base 0.9 (September 2016)

	adapya was split into smaller packages to achieve independence

	support of Python 3.5 and higher

	support of z/OS with the Rocket Python 2.7.12

Adapya 0.8

	dtconv.py new routine for date/time conversions

	Datamap added support for

	multiple fields and periodic groups

	packed and unpacked format

	mapping datetime() objects to DATETIME, TIMESTAMP U fields

adapya 0.7 is the first public release.

Installation

Prerequisites

Before installing adapya ensure the following:

	Python is available on the platform.

adapya supports the Python versions 2.7 or 3.5 and higher

If you have no Python on the system you may install Python
V2.7 or V3.6. The Python installer can be downloaded from

http://www.python.org/download/

	the ctypes package has been ported (usually installed with Python
on Windows, Linux and Rocket Python on z/OS from version 2.7.12)

On some platforms this may not be available because of issues with the
underlying forreign function package that does not support the
hardware.

	Sudo rights simplify standard installation (Unix/Linux).

Note

Users starting with Python are advised to read the Python
Tutorial available with function key F1 in the IDLE Python GUI or at
https://docs.python.org/3/tutorial/index.html

Installation with Package Installer

The Python package installer offers the most convenient method of
installing packages.

From Python package index web site:

> pip install adapya-base

From zip file (similarly for tar file):

> pip install adapya-base-1.0.4.zip

Additional z/OS Installation Notes

Rocket Software has released Python versions 2.7 and 3.6 for z/OS
to run unter Unix System Services.

For installing the package under one of those versions perform the following steps:

	FTP transfer the zip file in binary mode

	execute pip with the following parameters (in one line):

pip install -U –no-index –disable-pip-version-check –no-binary all adapya-base-1.0.4.zip

PYTHONPATH Installation

Alternatively, the PYTHONPATH installation allows for temporary
package installation by adding the location of the package to the
PYTHONPATH environment variable. As location may serve the directory
where the package was extracted to or the package zip file itself.

When the Python interpreter is started it evaluates the environment
variable PYTHONPATH and adds any directories listed to its search
path for modules.

For example, on Windows the following steps would do a PYTHONPATH installation:

	The zip file adapya-base-1.0.4.zip contains a directory adapya/base/*

	Unzip adapya-base-1.0.4.zip to a convenient location e.g.:

> C:/ADA/Python

maintaining the subdirectory structure

	Set/check the following system variables

On Windows (Win-key + PAUSE-key) open the System Control / select
Extended Control / button Environment Variable:

> REM adapya-base Python directory
> set PYB=C:\ada\python\adapya-base-1.0.4
> set PYTHONPATH=%PYB%;%PYTHONPATH%

	Open a cmd window and go to Adabas demo files directory:

> cd %PYB%/adapya/base

	Check successful installation with dump.py to dump contents of file:

> python dump.py -f future.py

Additional Windows Installation Notes

Simplifying Execution of Python Scripts

The option to register Python files can be selected during the Python
installation. This binds certain Python file types and associations to the
Python executable being installed (or to the Python launcher py.exe).

For example for .py the following may have been set:

ftype Python.File="C:\Windows\py.exe" "%L" %*
ftype Python.ArchiveFile="C:\Windows\py.exe" "%L" %*
ftype Python.CompiledFile="C:\Windows\py.exe" "%L" %*
ftype Python.NoConArchiveFile="C:\Windows\pyw.exe" "%L" %*
ftype Python.NoConFile="C:\Windows\pyw.exe" "%L" %*

assoc .py=Python.File
assoc .pyc=Python.CompiledFile
assoc .pyo=Python.CompiledFile
assoc .pyw=Python.NoConFile
assoc .pyz=Python.ArchiveFile
assoc .pyzw=Python.NoConArchiveFile

If you add .py and the corresponding compiled extensions
to the PATHEXT variable it is possible to run a script without
writing the extension

set PATHEXT=.py;.pyc;.pyo;%PATHEXT%
dump -h

rather than typing:

dump.py -h

Unix/Linux PYTHONPATH Installation

The PYTHONPATH environment variable defines an extra search path for
python modules. If the path to the Adabas Python directory is added to
the variable it is included in the search:

cd /FS/disk01/pya # root directory
tar xf adapya-base-1.0.4.tar # unpack to adapya-base-v.r.l
setenv PYA "/FS/disk01/pya"
setenv PYTHONPATH $PYA':'$PYTHONPATH # add PYA to PYTHONPATH
cd $PYA/adapya/base # go to directory
python dump.py -h

Note

If your local internet is protected by a http proxy you may need to set
the HTTP_PROXY environment variable before running easy_install (CYGWIN):

SET HTTP_PROXY=http://<httpprox.your-local.net>:<httpprox-port>

Not setting it may result in timing out operations.

Using adapya-base

Read/Write Buffers with Abuf

Implemented in adapya.base.defs

Read/write buffers are not directly available in Python only indirectly
with I/O routines.

The adapya.base.defs.Abuf class implements read/write buffers. They are used for the Adabas
control block and other buffers.:

>>> from adapya.base.defs import Abuf # Access Abuf class
>>> a=Abuf(8) # Allocate buffer of 8 bytes
>>> a.value=b'Bell' # store 'Bell' into buffer a
>>> a.raw # show contents of a
b'bell\x00\x00\x00\x00'

>>> a[0:8] # same in slice notation
b'bell\x00\x00\x00\x00'

>>> a[0:4] # extract part of buffer
b'bell'

>>> a[0]=b'W' # modify buffer at offset 0
b'Well\x00\x00\x00\x00'

>>> a.read(5) # read() 5 bytes of the buffer
b'Well\x00'

>>> a.read(5) # read() next bytes (only 3 left)
b'\x00\x00\x00'

>>> a.tell() # inquire position
8

>>> a.seek(0) # position to start of buffer
>>> a.write('Sun') # write first 3 characters
b'Sunl\x00\x00\x00\x00'

Working with Structures with Datamap

Implemented in adapya.base.datamap

The datamap module defines the Datamap class that allows to define
structure within a byte buffer. This is similar to a DSECT or C struct.
This is being used for setting up the Adabas control block and the other
buffers like record buffer or value buffer.

Datamap Data Types

The following data types require a name and a length:

	String

	alpha numeric string

	Unicode

	Unicode string (in UTF-16, each character takes 2 bytes)

	Bytes

	similar to String but hexadecimal contents

	Packed

	integer mapped to P format

	Unpacked

	integer mapped to U format

The other data types take only the name:

	Char

	1 byte character

	Int1/2/4/8

	signed integer of 1, 2, 4 or 8 bytes

	Uint1/2/4/8

	unsigned integer of 1, 2, 4 or 8 bytes

	Float

	single precision float (IEEE format)

	Double

	double precision float (IEEE format)

Basic Usage example

>>> from adapya.base.defs import Abuf
>>> from adapya.base.datamap import Datamap, String, Int2
>>> dm=Datamap('mymap',
 String('name',6), # List of field definitions. Its order
 Int2('age')) # defines the position in the buffer
>>> dm.getsize() # query the size of the datamap dm
8
>>> a=Abuf(8)
>>> dm.buffer=a # use buffer a with datamap dm
>>> dm.name='Bell' # assign name
>>> dm.age=64 # assign age
>>> dm.dprint() # print out all values of datamap dm
mymap
name = "Bell"
age = 64

>>> dm.age # individual attribute access
64
>>> dm.name
'Bell'
>>> dm.name='12345678' # silent truncation (field size defined = 6)
>>> dm.name
'123456'
>>> dm.name='1234 ' # silent blank truncation on return
>>> dm.name
'1234'

Example showing the different data types

from adapya.base.datamap import Datamap, String, Unicode, Utf8, Bytes,
 Char, Int1, Uint1, Int2, Uint2, Int4, Uint4, Int8, Uint8,
 Float, Double, Unpacked

p = Datamap('test_all_formats',
 String('str8', 8),
 Unicode('uni4', 4), # unicode 4 chars = 8 bytes
 Utf8('utf8', 8),
 Bytes('byt4', 4),
 Char('cha1'),
 Int1('int1'),
 Uint1('uin1'),
 Int2('int2'),
 Uint2('uin2'),
 Int4('int4'),
 Uint4('uin4', opt=T_STCK), # Uint4 STCK
 Int8('int8'),
 Uint8('uin8', opt=T_STCK), # Uint8 STCK
 Float('flo4'),
 Double('dou8'),
 Unpacked('dati', 14, dt='DATETIME'), # Python datetime object
)

With Uint4 and Uint8 the additional option T_STCK indicates that the
value is a timestamp value in mainframe STCK format. This is evaluated
with the dprint() function to print the timestamp in readable ISO
format.

An Unpacked field defined with the dt option (value ‘DATETIME’ or
‘TIMESTAMP’) work with Python datetime() objects:

>>> from datetime import datetime
>>> p.dati = datetime.now()
>>> print p.dati
2010-05-01 11:55:00

>>> _,pos,ln,_,_ = p.keydict['dati']
>>> p.buffer[pos:pos+ln]
'20100501115500'

Note that a datetime value of zero corresponds to the Python None
type:

>>> p.dati = None
>>> print p.dati
None
>>> p.buffer[pos:pos+ln]
'00000000000000'

Defining Multiple fields

If the keyword occurs is added to the end of the field definition
it becomes a multiple value field.

Note

The field access does not return the field value but an iterator
over the occurrences values - see m.languages as in the example below:

>>> from adabas.datamap import Datamap, String
>>> from adabas import Abuf
>>> m = Datamap('mulitple_demo', String('languages', 3, occurs=5),
 buffer=Abuf(100))
>>> m.languages=('ENG','FRA','GER')
>>> m.languages[2]
'GER'
>>> m.languages[2]='RUS'

>>> for lang in m.languages:
 print lang
ENG
FRA
RUS

Defining Periodic Group

If the field definition within a datamap contains a periodic ()
definition a datamap at the present location is defined.

from adapya.base.datamap import Datamap, String, Packed
p = Datamap('Periodics Demo',
 ...
 Periodic(
 Datamap('Income',
 String('currency', 3),
 Packed('annual', 5)
),
 occurs=8),
 ...
)

>>> print len(p.income)
8

p.income[0].currency = 'EUR'
p.income[0].annual = 99000

Scripts

There are some scripts in adapya.base.scripts that can be run on the command line.
Usually they accept Unix style parameters. A help page is shown with the help option.

	ftpz.py - synchronize partitioned datasets with local folders

	getfilez.py - transfer single file and dump records

	smfreaderz.py - read and interpret SMF30 records

ftpz.py - synchronize PDS with local files in folders

ftpz.py synchronizes remote partitioned datasets on z/OS with
local files in folders.

The syncronization depends on the modification time stamps
in the file system and the PDS directory

Usage: ftpz.py [options]:

[-h] [-k] [-e [EXT]] [-n HOST] [-p PWD] [-s SITE] [-u USER]
[-r] [-t] [-v VERBOSE] [-d PREFIX] [-x [EXCLUDE [EXCLUDE ...]]]
[-i [INCLUDE [INCLUDE ...]]]
{upsync,upload,download,downsync,config} [pds]

Positional arguments:

{upsync,upload,download,downsync,config}:

	
	upsync: upload changed members to partioned dataset (PDS) and

	delete members not existing in source

	upload: upload changed files to partioned datasets (PDS)

	download: download changed files from partioned datasets (PDS)

	
	downsync: download changed members from partioned dataset (PDS)

	and delete members not existing in PDS

	
	config: display or set configuration pds -

	Partitioned Dataset name w/o quotes. With ending
period: parameter is used as high-level qualifier

Optional arguments:

-h, --help show this help message and exit
-k, --keepsame On download/sync do not overwrite old file if contents
 same as new file
-e [EXT], --ext [EXT]
 extension to process (default is .s) e.g. -e .c -e
 without argument: no extension
-n HOST, --host HOST ftp z/OS host name
-p PWD, --pwd PWD ftp z/OS user id
-s SITE, --site SITE Set ftp server options per quote site
-u USER, --user USER ftp z/OS user password
-r, --ignerr ignore ftp member access errors
-t, --test dry run - list actions only
-v VERBOSE, --verbose VERBOSE
 verbose output (1 to 3)
-d PREFIX, --prefix PREFIX
 dataset prefix
-x [EXCLUDE [EXCLUDE ...]], --exclude [EXCLUDE [EXCLUDE ...]]
 list of libraries/members to exlude from processing
-i [INCLUDE [INCLUDE ...]], --include [INCLUDE [INCLUDE ...]]
 list of libraries/members to include in processing

Examples:

	sync-up PDS mm.test.adasrc from current directory and delete
member that do not exist in source:

> ftpz upsync --user xyz --pwd secret --host zmax MM.TEST.ADASRC

	update all changed members PDS mm.test.adasrc from current directory:

> ftpz upload --user xyz --pwd secret --host zmax MM.TEST.ADASRC

	ftpz upsync -t mm.test.adasrc # dry run without updating

	set configuration default values:

> ftpz config --user xyz --pwd secret --host zmax # set config
> ftpz config # list config

> ftpz upload MM.TEST.ADASRC # use config

When a configuration file is set up with the most common parameters in use -
(user, host and password (pwd)) these do not have to be typed
on each script execution. The password is encrypted so that it is not
plainly readable on the command line. See example 2.

	download

Download all missing or changed members of PDS mm.test.adasrc to
current directory:

> ftpz download MM.TEST.ADASRC

	downsync

Same as ‘download’ and in addition delete members in directory that
are missing in PDS:

> ftpz downsync MM.TEST.ADASRC

	download all changed members for all PDS starting with high-level quailfier (HLQ).

The current directory is used as the base matching its subdirectories name with
partitioned datasets HLQ.name. Optionally exclude or include parameters can
specifiy a list of libraries to exclude or include separated by space:

> ftpz download mm.test. --exclude unwanted abandond

will process pds mm.test.source and mm.test.macros but
exclude mm.test.unwanted and mm.test.abandond

	download specific missing or changed members ‘FOO’ and ‘BAR’ of a PDS as
foo.s and bar.s in current directory:

> ftpz download mm.test.source --include foo bar

	download to use extension .c and special translation table for
ibm-1047 to ibm-819 with EBCDIC LF = 0x15

> ftpz download mm.c.source -e .c -s sbdataconn=MM.OEMVS31.TCPXLBIN

getfilez.py - transfer single file and optionally dump records

Read specific dataset or PDS member from z/OS per FTP
converted to ASCII or binary.

Datasets may be variable blocked sequential dataset as binary with
RDW record prefix.

Usage: getfilez [options]

The records of the local file can be dumped setting the –verbose switch 4
and a selected with –numrec and –skiprec parameters (example 3 below).

Options:

-a --ascii transfer with EBCDIC to ASCII conversion
-b --binary binary transfer (variable blocked) with RDW prefix
-d --dsn remote sequential dataset name
-e --ext extension (default .s) for member names if no
 fname specified
-f --fname local file name (optional)
-c, --config set/show configuration

-n --numrec with verbose & 4: number of records to print
-p, --pwd <password> FTP ser1.0.4ogin password (*)
-u, --user <userid> (*)

-r, --recform specifies the record structure:
 'RDW' variable records inlcude Record
 Descriptor Word which is skipped
 'RDW+' same as RDW but also return RDW
 'BDW' data includes Block Descriptor Word
 which is skipped (RECFM=U)
 'BDW+' same as BDW, bu also return record with RDW
 'EXCL4' 4 byte excl. length prefix
-s --skiprec with verbose & 4: number of records to skip
-v, --verbose 0: (default), 1: log ftp, 2: detailed ftp,
 4: dump records
-x, --xlate full dataset name of the hlq.name.TCPXLBIN translate
 table on mainframe for EBCDIC to ASCII conversion
 using the "site SBDATACON=<xlate>
-h, --host <host name> of IBM FTP server (*)
-?, --help

Defaults marked with (*) are taken from configuration (-c)
The configuration values are stored ciphered in file ~/.toolz

Examples:

	set configuration user, password:

> getfilez --config --user hugo --pwd secret

	read remote dataset with verbose FTP operations, user and password
are taken from configuration. File is processed binary and RDW record
headers are preserved:

> getfilez -bd mm.db8.uld1 -r RDW -h da3f -v2

	dump VB records in local file limited by skiprec and numrec:

> getfilez -f mm.db8.uld1 -r RDW -v4 -n 1000 -s 1222000

	copy member EPILOG from PDS to local file epilog.s and convert to ASCII:

> getfilez -ad mm.pds(epilog)

smfreaderz.py - read and print SMF30 records

Usage: smfreaderz [options]:

options:

 -d --dsn <smf dataset name> remote SMF file
 -f --file <file> local SMF file
 -b --bfile <file> local SMF file VB blocked with BDW

 -k, --skiprec <int> number of records to skip
 -m, --maxrec <int> maximum number of records
 -p, --pwd <password> FTP ser1.0.4ogin password (*)
 -u, --user <userid> FTP ser1.0.4ogin userid (*)
 -h, --host <host name> of IBM FTP server (*)

 -s, --select <record selection criteria> see below (**)

 -c, --config Set/show configuration
 -v, --verbose level of printed information (default 2)
 -?, --help

(**) record selection criteria kw1=val1[,kw2=val2]
 enclose hole string with " if it contains blanks
 valid keywords: job, id, user, group, prog
 Criteria must be all fulfilled to select a record
 Example: -s job=*MM*,group=RND,id=J*,prog=*ASM

(***) verbose level, composable: 1 - stats SMF records
 2 - detailed print selected SMF records, 4 - dump records,
 8 - debug

Defaults marked with (*) are taken from configuration.
The configuration for user specific parameters can be stored
with the --config option.

The reader can transfer the file (--dsn) per FTP from a remote z/OS
with the RDW option or can access the file locally if already
transfered (--file). On z/OS the --bfile option may be used.

Option -b/--bfile if file includes block descriptor word (BDW)
e.g. when running on z/OS with DCB=(RECFM=U) override on DD stmt

Examples:

1. set configuration user, password
 smfreaderz --config --user hugo --pwd secret

2. read remote SMF dataset and print
 smfreaderz -d cc.sysa.smf -h sysa

The following command (on Windows cmd) will select SMF30 records
with program name ADARUN from a SMF system dataset:

>>> smfreaderz -v3 -s JOB=MM10026 -d ZMAX.SMFDAY.G3037V00

Record selected by condition [‘ JOB=MM10026’]:

--- Record 181197: SMF30 ---

Product or Subsystem Section
SMF30 sub type = Step total
Record version number = '05'
Subsystem product name = 'SMF'
MVS product level = 'SP7.2.1'
System name = 'ZMAX'
Sysplex name = 'MAXPLEX'

Job/Session Id Section
Job/session name = 'MM10026'
Program name = 'ADARUN'
Step name = 'ADANUC'
JES job id = 'S0207297'
Step number = 1
Device allocation start time = 14:35:54.95
Problem program start time = 14:35:55.23
Time initiator selected step = 14:35:54.95
Date initiator selected step = 2018.079
Time reader found job card = 14:35:54.79
Date reader found job card = 2018.079
Time reader found end of job = 14:35:54.82
Date reader found end of job = 2018.079
RACF group id = 'MFRAME'
RACF user id = 'RACFSTC'
Step name invoking procedure = 'STARTING'
Job class = 'STC'
Interval start time = 2018-03-20 14:35:54.955237.078
Interval end time = 2018-03-20 14:56:26.669574.079
Address space id = X'012E'

CPU accounting section
Timer Flag1 = X'80'
Step CPU time under TCB = 00:00:45.18
Step CPU time under SRB = 00:00:12.24
Initiator CPU time under TCB = 00:00:00.30
CPU time I/O Interrupts = 00:00:06.26
Step dependent enclave CPU time = 00:00:44.62
Time on zIIP = 00:00:42.66
Dependent enclave time on zIIP = 00:00:42.66
zIIP time on CP = 00:00:03.06
Dependent enclave zIIP time on CP = 00:00:03.06
Dependent enclave zIIP time on CP normalized = 00:07:51.38
CPU TCB time for step init = 00:00:00.24
Highest Task Program name = 'IEESB605'

Performance section
zIIP normalization factor = 1.98

To run this in z/OS batch the dataset must be referenced via DD name ‘SMF’:

//MMSMF30 JOB MM,CLASS=G,MSGCLASS=X,LINES=100
//*
//* smfreaderz.py reads SMF files from DD:SMF
//* -h option will print usage / description
//*
//BPX EXEC PGM=BPXBATSL
//SMF DD DISP=SHR,DSN=OPS.ZMAX.SMFDAY.G3037V00,DCB=(RECFM=U)
//STDPARM DD *
PGM /usr/mm/py27/bin/python
 /usr/mm/apy/smfreaderz.py -b dd:SMF -v3
 -s JOB=MM10026
/*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD PATH='/usr/mm/apy/batsl.env',PATHOPTS=ORDONLY
//

Package Reference

Indices

	Index

	Module Index

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 adapya-base - Base for other adapya packages

 		
 Overview

 		
 adapya-base License

 		
 Change History

 		
 Installation

 		
 Prerequisites

 		
 Installation with Package Installer

 		
 Additional z/OS Installation Notes

 		
 PYTHONPATH Installation

 		
 Additional Windows Installation Notes

 		
 Simplifying Execution of Python Scripts

 		
 Unix/Linux PYTHONPATH Installation

 		
 Using adapya-base

 		
 Read/Write Buffers with Abuf

 		
 Working with Structures with Datamap

 		
 Datamap Data Types

 		
 Basic Usage example

 		
 Example showing the different data types

 		
 Defining Multiple fields

 		
 Defining Periodic Group

 		
 Scripts

 		
 ftpz.py - synchronize PDS with local files in folders

 		
 getfilez.py - transfer single file and optionally dump records

 		
 smfreaderz.py - read and print SMF30 records

 		
 Package Reference

 		
 Indices

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

